Time Dependent Holography
Advertisement is attached
Title: Quasi-optimality in the backward Euler-Galerkin method for linear parabolic problems
Abstract: We analyse the backward Euler-Galerkin method for linear parabolic problems, looking for quasi-optimality results in the sense of Céa's > Lemma. We study first the spatial discretization, proving that the H1-stability of the L2- projection is also a necessary condition for quasi-optimality. Regarding the discretization in time with backward Euler, we prove that the error is equivalent to the sum of the best errors with piecewise constants for the exact solution and its time derivative. Concerning the case when the spatial discretization is allowed to change with time, we bound the error with the best error and an additional term, which vanishes if there are not modifications of the spatial dicretization and it is consistent with the example of non convergence in Dupont '82. We combine these elements in an analysis of the backward Euler-Galerkin method and derive error estimates in case the spatial discretization is based on finite elements.
Andrew Ritzel won this year's Sullivan Award for his work in the Alternate Spring Break Program.
All are welcome!
Title: Algebraic K-theory and crossed objects
Abstract: After reviewing the classical lower K-groups, Milnor's K_2, and Quillen's plus construction (stopping for examples along the way), we will look at definitions of crossed modules and crossed complexes. After showing that certain K-groups can be regarded as these crossed objects, we will see how this might give insight into explicit descriptions of the plus construction in terms of generators and relations of the Steinberg group.
Title: Terraces, Latin squares, and the Oberwolfach problem
Abstract: A terrace is an arrangement of the elements of a finite group in which differences between adjacent elements adhere to certain restrictions. We introduce terraces and a number of related objects, including R-terraces and directed terraces, and discuss conjectures concerning the groups for which we can construct terraces. We also consider applications of terraces to problems in the areas of combinatorial design and graph theory - namely, the construction of row-complete Latin squares and solutions to some particular cases of the Oberwolfach problem.