Skip to main content

Genomic Data Reveal Conserved Female Heterogamety in Giant Salamanders with Gigantic Nuclear Genomes.

Author
Abstract
:

Systems of genetic sex determination and the homology of sex chromosomes in different taxa vary greatly across vertebrates. Much progress remains to be made in understanding systems of genetic sex determination in non-model organisms, especially those with homomorphic sex chromosomes and/or large genomes. We used reduced representation genome sequencing to investigate genetic sex determination systems in the salamander family Cryptobranchidae (genera and ), which typifies both of these inherent difficulties. We tested hypotheses of male- or female-heterogamety by sequencing hundreds of thousands of anonymous genomic regions in a panel of known-sex cryptobranchids and characterized patterns of presence/absence, inferred zygosity, and depth of coverage to identify sex-linked regions of these 56 gigabase genomes. Our results strongly support the hypothesis that all cryptobranchid species possess homologous systems of female heterogamety, despite maintenance of homomorphic sex chromosomes over nearly 60 million years. Additionally, we report a robust, non-invasive genetic assay for sex diagnosis in and which may have great utility for conservation efforts with these endangered salamanders. Co-amplification of these W-linked markers in both cryptobranchid genera provides evidence for long-term sex chromosome stasis in one of the most divergent salamander lineages. These findings inform hypotheses about the ancestral mode of sex determination in salamanders, but suggest that comparative data from other salamander families are needed. Our results further demonstrate that massive genomes are not necessarily a barrier to effective genome-wide sequencing and that the resulting data can be highly informative about sex determination systems in taxa with homomorphic sex chromosomes.

Year of Publication
:
2019
Journal
:
G3 (Bethesda, Md.)
Volume
:
9
Issue
:
10
Number of Pages
:
3467-3476
Date Published
:
2019
DOI
:
10.1534/g3.119.400556
Short Title
:
G3 (Bethesda)
Download citation