Skip to main content

Sulfhydryl reagents and energy-linked reactions in monocot thylakoids.

Author
Abstract
:

Monofunctional maleimides have been used to covalently modify the coupling factor protein of monocot thylakoid membranes. As with dicot thylakoids, incubation of the monocot thylakoids with maleimides in the light but not in the dark results in inhibition of both ATP synthesis and hydrolysis. In the dark, sites on the gamma and epsilon subunits of maize Zea mays coupling factor 1 are modified after incubation of maize mesophyll thylakoids with the fluorescent maleimide N-(anilinonaphthyl-4) maleimide. A light accessible site localized solely to the gamma subunit has also been demonstrated. In contrast to the case with dicot thylakoids (spinach [Spinacia oleracea] and pea [Pisum sativum]) treatment of monocot thylakoids (maize, barley [Hordeum vulgare], crabgrass [Digitaria sanguinalis]) with bifunctional maleimides or thiol oxidants in the light does not result in functional uncoupling, i.e the bifunctional reagents act more like energy transfer inhibitors. The lack of functional uncoupling could be due either to a failure of the reagents to cross-link key sulfhydryl residues in the gamma subunit or to the continued ability of the gamma subunit to gate proton movements through the chloroplast coupling factor complex even though its conformation has been altered by sulfhydryl reagents.

Year of Publication
:
1990
Journal
:
Plant physiology
Volume
:
93
Issue
:
3
Number of Pages
:
1005-10
Date Published
:
1990 Jul
ISSN Number
:
0032-0889
URL
:
http://www.plantphysiol.org/cgi/pmidlookup?view=long&pmid=16667548
Short Title
:
Plant Physiol
Download citation